ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xianfei Wen, Andreas Enqvist
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1480-1487
Technical Paper | doi.org/10.1080/00295450.2019.1603503
Articles are hosted by Taylor and Francis Online.
The Cs2LiYCl6:Ce3+ (CLYC) scintillator is being widely employed in nuclear physics, planetary science, radiation environmental monitoring, nuclear security, and nonproliferation communities. The time resolution of a 1 × 1-in. CLYC scintillation detector is reported in this paper. It was measured by the use of a high sampling rate DRS4 waveform digitizer and an EJ-309 liquid scintillation detector. The digitizer was first characterized with regard to its intrinsic time resolution and then the time resolution of the EJ-309 detector was investigated. It served as a reference detector in the time resolution measurements for the CLYC detector. The time pick-off techniques used were the constant fraction discrimination and leading edge discrimination methods. In addition, the Savitzky-Golay filter was used to further improve the measured time resolutions. This filter was shown to be an effective approach to improving time resolution when the signal-to-noise ratio is low.