ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Xianfei Wen, Andreas Enqvist
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1480-1487
Technical Paper | doi.org/10.1080/00295450.2019.1603503
Articles are hosted by Taylor and Francis Online.
The Cs2LiYCl6:Ce3+ (CLYC) scintillator is being widely employed in nuclear physics, planetary science, radiation environmental monitoring, nuclear security, and nonproliferation communities. The time resolution of a 1 × 1-in. CLYC scintillation detector is reported in this paper. It was measured by the use of a high sampling rate DRS4 waveform digitizer and an EJ-309 liquid scintillation detector. The digitizer was first characterized with regard to its intrinsic time resolution and then the time resolution of the EJ-309 detector was investigated. It served as a reference detector in the time resolution measurements for the CLYC detector. The time pick-off techniques used were the constant fraction discrimination and leading edge discrimination methods. In addition, the Savitzky-Golay filter was used to further improve the measured time resolutions. This filter was shown to be an effective approach to improving time resolution when the signal-to-noise ratio is low.