ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sayed A. El-Mongy, Kh. A. Allam
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1474-1479
Technical Paper | doi.org/10.1080/00295450.2019.1593012
Articles are hosted by Taylor and Francis Online.
Precise assay of uranium enrichment without time-consuming analysis is a crucial factor in nuclear safeguards process. This paper aims at a computational development using innovative Monte Carlo (MC) method for 235U mass enrichment (%E) verification for the UF6 cylinder. This new approach focuses mainly on using different UF6 physical properties (effective volume and density) and extra 235U gamma- and X-ray transitions as input parameters for efficient calculations of %E assay. In this work, we used the measured values of the dose rate (μSv/h) due to the emitted gamma- and X-rays of 235U content at the cylinder external surface for enrichment calculations. The attenuation of the main 235U gamma- and X-energies due to the cylinder wall (5B-Type Ni Inconel alloy) was also estimated to wide range of energies using XCOM: Photon Cross Sections Database software. Using this suggested model for 235U enrichment calculation, the calculated value of 19.46 ± 1.28% is within one standard deviation of the certified value of 19.75 ± 0.40%. The mass of 235U was also estimated and found to be 2.6814 kg. Based on this improved approach, the total uranium activity of the investigated UF6 cylinder was calculated and found to be (5.52 GBq), which is 98.6% from the declared activity value (5.6 GBq). These accurate and confident calculated values are direct functions in the improved parameters and the developed MC code.