ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hoai-Nam Tran, Yasuyoshi Kato, Peng Hong Liem, Van-Khanh Hoang, Sy Minh Tuan Hoang
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1460-1473
Technical Paper | doi.org/10.1080/00295450.2019.1601470
Articles are hosted by Taylor and Francis Online.
This paper presents the investigation of minor actinide (MA) transmutation in supercritical CO2-cooled and sodium-cooled fast reactors (S-CO2-FR and SFR) with the thermal output of 600 MW(thermal) for simultaneously attaining low burnup reactivity swings and reducing long-life radioactive waste. Minor actinides are loaded uniformly in the fuel of the cores, and the MA contents are determined to minimize the burnup reactivity swings. In the S-CO2-FR, the burnup reactivity swing is minimized to 0.11% ∆k/kk’ when the MA content is 6.0 wt%. In the SFR, the MA content was determined to reduce the burnup reactivity swing while maintaining sodium void reactivity under a design limitation of 5 $. The burnup reactivity swing of the SFR is reduced to 1.94% ∆k/kk’, whereas sodium void reactivity is about 4.7 $ when 10.0 wt% MAs are loaded. The low burnup reactivity swing enables minimization of control rod operation during fuel burnup. The number of control rods in the two reactors is reduced to ten, which is half of a typical sodium-cooled mixed-oxide fuel MONJU reactor without MA loading. The MA transmutation rates in the S-CO2-FR and SFR are 42.2 and 52.2 kg/year, respectively, which are equivalent to the production rates in seven and nine light water reactors of the same electrical output.