ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Dawn E. Janney, Steven L. Hayes, Cynthia A. Adkins
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1387-1415
Critical Review | doi.org/10.1080/00295450.2019.1578573
Articles are hosted by Taylor and Francis Online.
The U-Pu-Zr metallic fuels contain multiple phases whose properties and distributions evolve due to factors such as fission, nuclear transmutation, and elemental redistribution under the influence of chemical and thermal gradients. An understanding of experimental data about phases, phase relationships, and phase properties in the U-Pu-Zr system is needed to enable mechanistic modeling of these phenomena and guide future research.
Although U-Pu-Zr alloys have been investigated for more than 60 years, relatively little reliable experimental information is available. Information about the technologically important alloy U-20Pu-10Zr (weight percent) is even more limited. The U-Pu-Zr alloys are difficult materials to study experimentally, and it is therefore important to understand what results have already been obtained, how reliable they are, and where they were reported.
This critical review provides a thorough compilation and critical assessment of the available experimental data involving properties of U-Pu-Zr phases, phase transitions, and phase diagrams, with particular attention to alloys with compositions close to U-20Pu-10Zr (weight percent). It is intended as a resource for fuel designers and modelers and a guide for prioritizing future experimental work.