ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Chad L. Pope, Colby B. Jensen, Douglas M. Gerstner, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1378-1386
Technical Note | doi.org/10.1080/00295450.2019.1599615
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s. The air-cooled reactor design incorporates fuel composed of highly enriched uranium dispersed in graphite with a 10 000:1 carbon-to-uranium atom ratio to provide a very fast-acting highly negative temperature coefficient of reactivity. The reactor utilizes a forced-air-cooling system for decay heat removal, with a primary function of reducing the time at temperature (oxidation) of the reactor fuel cladding. The simple design with lack of a cooling system pressure boundary provides relatively easy access for instrumentation and experiments. The large thermal mass of the reactor and the simple design allow for high-power transients approaching 18 000 MW in an inherently safe manner. The simple design has allowed TREAT to operate successfully for 35 years before being placed in standby in 1994 and subsequently restarted in 2017 after more than 20 years of standby to continue the transient fuel testing mission in the United States. This technical note addresses the reactor design and experiment capabilities.