ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thomas Holschuh, Scott Watson, David Chichester
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1336-1345
Technical Paper | doi.org/10.1080/00295450.2019.1599613
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility, located at Idaho National Laboratory, restarted transient operations in 2018 following an extended shutdown. It is of interest to establish a methodology and capability to obtain an accurate estimate of the total number of fissions produced in a fissionable test item during a transient at TREAT. Uranium wires were irradiated in TREAT as part of a transient prescription test program, and gamma-ray spectrometry was performed on the wires following irradiation using a high-purity germanium detector. Many fission products are useful for estimating the number of fissions produced in a sample using gamma-ray spectrometry; at TREAT with the time periods used for analysis, the isotopes of interest include 95Zr, 95Nb, 103Ru, 140Ba, and 140La. The number of fissions per gram of 235U determined from these measurements establishes an estimate for future experiments to be performed in the core when a similar configuration is used with a similar transient prescription.