ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Benjamin M. Chase, Anthony W. LaPorta, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1312-1324
Technical Paper | doi.org/10.1080/00295450.2019.1585162
Articles are hosted by Taylor and Francis Online.
A core characterization process was completed as part of the Transient Reactor Test Facility (TREAT) restart project. The core characterization process is normally performed following a reconfiguration of the TREAT core. This characterization process includes performance of three temperature-limited transients. Prior to performing the transients, analysis is performed using KENO-VI to determine the high-temperature locations and the initiating reactivities for each transient. The point-kinetics code Simulating TREAT Reactor Kinetics (STREK) is used to estimate the peak power, peak temperature, and total energy deposition in the core. STREK also provides plots of pertinent parameters as functions of time to observe time-dependent behavior of the transient. After the transients are complete, the resulting data from these transients are used to develop operating limits for continued operation with the core configuration being characterized. The three transients for the characterization are performed in a progression of increasing initiating reactivity. The first transient has an initiating reactivity of 1.8%Δk/k. The second transient has an initiating reactivity of 3.0%Δk/k. The third transient has an initiating reactivity of 3.85%Δk/k. After the first two transients are performed, a two-point extrapolation of the data is used to determine a temporary estimate of the core operating limits. Once the third transient is complete, the resulting data are fit to an equation, and a three-point extrapolation of the operating limits for the core configuration is generated. This completes the characterization process and provides conservative limits for transient operation of TREAT.