ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Anthony W. LaPorta
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1290-1301
Technical Paper | doi.org/10.1080/00295450.2019.1565471
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility was constructed in 1958 and became operational in 1959. The TREAT reactor is an air-cooled test reactor that can be operated in multiple modes: up to 20 GW for short-duration “burst” pulses (approximately 100 to 200 ms) producing an intense neutron pulse; lower power (megawatt range)–shaped transients intended to simulate fuel heating prior to accident conditions being imposed; or in a low power mode of up to 120 kW for experiment preconditioning or neutron radiography. TREAT operated from 1959 through 1994 when it was put into a standby condition. With the accident at Fukashima-Daiichi that resulted in extensive fuel failure, the U.S. Department of Energy selected TREAT for restart and irradiation of new accident-tolerant fuel designs for U.S. commercial nuclear plants. This paper discusses the basic process that was used to perform the initial criticality following the TREAT extended shutdown operation from 1994 to 2017.