ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
J. El Asri, O. El Bounagui, N. Tahiri, H. Erramli, A. Chetaine
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1236-1244
Technical Paper | doi.org/10.1080/00295450.2019.1590071
Articles are hosted by Taylor and Francis Online.
The stopping power of Formvar and Mylar polymeric materials for energy region (0.1 to 1.0) MeV/nucleon 19F, 23Na, 24Mg, 27Al, 28Si, 31P, 32S, 35Cl, and 40Ar ions have been determined. The energy loss and stopping power of Mylar were calculated for 11B having energies between 0.31 and 0.85 MeV/nucleon. In fact, the factor ξe and exponential function f(E) involved in Lindhard, Scharff, and Schiott (LSS) theory has been modified in light of the available simulation electronic stopping power values. The results obtained by the LSS modified theory and Monte Carlo simulations are compared with MSTAR, the SRIM predictions code, and experimental data. The obtained results show a close agreement qualitatively with MSTAR, experimental data, and those generated by the SRIM computer code.