ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
Mohammad Abdul Motalab, Woosong Kim, Yonghee Kim
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1185-1204
Technical Paper | doi.org/10.1080/00295450.2019.1582942
Articles are hosted by Taylor and Francis Online.
This paper is concerned with an improved two-step methodology based on the nodal equivalence theory for more accurate and consistent CANDU reactor analysis. In addition, the albedo-corrected parameterized equivalence constants (APEC) method is introduced to achieve further improvement of the nodal solution by correcting the burnup-dependent cross sections (XSs) and discontinuity factors (DFs). The APEC algorithm is incorporated into an in-house nodal expansion method (NEM) code. Colorset calculations are performed to obtain physically meaningful leakage information of the fuel lattice, and the results are used for generating burnup-dependent APEC functions to correct groupwise XSs and DFs. The NEM-equivalent reference DF on each surface of the colorset are calculated for a coarse mesh (1 × 1 mesh per fuel assembly) using the net-current boundary conditions. These reference DFs are used to determine the DF APEC functions. A separate set of burnup-dependent APEC functions is generated for the fuel lattice loaded with a reactivity device. Both position- and burnup-dependent APEC functions are applied for accurate CANDU core analysis. A two-dimensional CANDU whole-core nodal analysis is performed to show the effectiveness of the APEC corrections. Moreover, several variants of the original benchmark are also analyzed with the same APEC functions to confirm the general applicability of the predetermined APEC functions. In addition, NEM calculations are performed for a CANDU core with a reactivity device and its variants with different burnup profiles. Numerical results show that the APEC-based two-step nodal methodology can provide an accurate and consistent solution for burned CANDU cores with reactivity device.