ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Toshihide Takai, Tomohiro Furukawa, Hidemasa Yamano
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1164-1174
Technical Paper | doi.org/10.1080/00295450.2019.1607136
Articles are hosted by Taylor and Francis Online.
This paper describes evaluation results of thermophysical properties of stainless steel (SS) containing 5 mass % boron carbide (B4C) in its solid phase. First, the authors synthesized SS-B4C samples with emphasis on 5 mass % B4C and SS using a hot press method and then evaluated its homogeneity in several ways, such as chemical composition analysis, metallographic structure observation, and micro X-ray diffraction. This study also evaluated the density and the specific heat and thermal conductivity of the SS-B4C sample and found that the density becomes lower and the temperature dependence of the density decreased as the temperature rose compared to that of stainless steel Type 316L (SS316L) used as a reactor material. The specific heat became slightly higher than that of SS316L and showed similar temperature dependence up to 1073 K. Unexpectedly, the thermal conductivity became lower than that of SS316L and showed similar temperature dependence up to 1273 K.