ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ke Deng, Mingjun Zhang, Xijun Wu, Qin Zhang, Guo Yang, Zhaowei Ma, Fei Wei, Guanghua Wang, Wei Liu
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1143-1153
Technical Paper | doi.org/10.1080/00295450.2019.1590076
Articles are hosted by Taylor and Francis Online.
Because of its high content in irradiated nuclear graphite, tritium is treated as one of the most important radionuclides, and it should be carefully decontaminated before the final disposal of nuclear graphite. Tritium has similar chemical and physical characteristics to those of hydrogen; therefore, in this research, the adsorption and desorption of tritium in nuclear graphite using hydrogen were studied. Three kinds of nuclear graphite, IG-110, NBG-18, and NG-CT-10, were used to conduct adsorption and desorption experiments using a new method based on gas chromatography; subsequently, a first-principles calculation on graphene was carried out to simulate the desorption of hydrogen from graphite. The results showed that tritium can be weakly and strongly adsorbed in nuclear graphite. The differences found in the amount of weak adsorption within nuclear graphite were mainly due to the graphite’s porosity and Brunauer-Emmett-Teller surface area, as reported previously in similar research. The mechanism for the strong adsorption was not explained clearly; it could be attributed to the results of a combination of the various physical properties of the graphite, especially the average pore size. The amount of weakly adsorbed hydrogen ranged from 48.4% to 95.2% of the total amount of adsorption for the nuclear graphite working at a temperature of 350°C. The weakly adsorbed tritium easily escaped from the nuclear graphite, indicating that this fraction of tritium would be the main source of pollution during the dismantling or the transportation of decommissioned graphite materials. In addition, the strongly adsorbed hydrogen began to be desorbed when the nuclear graphite was heated over 600°C, and 14% to 71% of the stably adsorbed hydrogen was desorbed when the temperature reached 700°C. A first-principles calculation indicated the activation energy for desorption of tritium from graphene to be about 2.17 eV.