ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Charles Forsberg, Dean Wang, Eugene Shwageraus, Brian Mays, Geoff Parks, Carolyn Coyle, Maolong Liu
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1127-1142
Technical Paper | doi.org/10.1080/00295450.2019.1586372
Articles are hosted by Taylor and Francis Online.
The flouride-salt-cooled high-temperature reactor (FHR) uses graphite-matrix coated-particle fuel [the same as high-temperature gas-cooled reactors (HTGRs)] and a clean liquid salt coolant. It delivers heat to the industrial process or the power cycle at temperatures between 600°C and 700°C with average heat delivery temperatures higher than for other reactors. The melting point of the liquid salt coolant is above 450°C. The high minimum temperatures present refueling challenges and require special features to control temperatures, avoiding excessively high temperatures and freezing of the coolant that could impact decay heat cooling systems. This paper describes a preconceptual FHR design that addresses many of these challenges by adopting features from the British advanced gas-cooled reactor (AGR) and alternative decay heat cooling systems. The bases for specific design choices are described.
The AGRs are carbon dioxide–cooled and graphite-moderated reactors that use cylindrical fuel subassemblies with vertical refueling at 650°C, which meets the FHR high-temperature refueling requirements. Fourteen AGRs have operated for many decades. The AGR uses eight cylindrical fuel subassemblies, each 1 m tall coupled axially together by a metal stringer to create a long fuel assembly. The stringer assemblies are in vertical channels in a graphite core that provides neutron moderation. This geometric core design is compatible with an FHR using graphite-matrix coated-particle fuel. The FHR uses a once-through fuel cycle. The design minimizes used nuclear fuel volumes relative to other FHR and HTGR designs. The primary system is inside a secondary liquid salt–filled tank that (1) provides an added heat sink for decay heat, (2) helps to ensure no freezing of primary system salt, and (3) helps to ensure no major fuel failures in a beyond-design-basis accident. The refueling standpipes above each stringer fuel assembly in the AGR core with modifications can be used in an FHR for refueling and can provide efficient heat transfer between the primary system and the secondary liquid salt–filled tank. The passive decay heat removal system uses heat pipes that turn on and off at a preset temperature to avoid overheating the core in a reactor accident and to avoid freezing the salt coolant as decay heat decreases after reactor shutdown.