ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jacob A. Farber, Daniel G. Cole, Ahmad Y. Al Rashdan, Vaibhav Yadav
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1043-1052
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2018.1534484
Articles are hosted by Taylor and Francis Online.
This paper presents data-driven methods to detect loss-of-coolant accidents (LOCAs) in the primary side of a pressurized water reactor. Process data for a variety of accident scenarios have been generated and collected using a generic pressurized water reactor simulator. The data have been used to train kernel density functions, which estimate nonparametric probability density functions based on training data. These density functions have then been used with Bayesian hypothesis testing and maximum likelihood estimation to detect the onset of the LOCAs and to identify where in the primary side the leaks have occurred. The methods have been able to detect the LOCAs for all scenarios tested with an average detection delay of one-seventh the time for the reactor to trip. Furthermore, the methods have been able to correctly identify the leak locations for 92.3% of the scenarios tested, with higher success rates for larger leaks.