ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ji Hyun Lee, Alper Yilmaz, Richard Denning, Tunc Aldemir
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1035-1042
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2018.1541394
Articles are hosted by Taylor and Francis Online.
An initiating event that disrupts regular nuclear power plant (NPP) operation can result in a variety of different scenarios as time progresses depending on the response of standby safety systems and operator actions to bring the plant to a safe, stable state, or the uncertainties in accident phenomenology. Depending on the severity of the accident and potential magnitude of release of radioactive material into the environment, off-site emergency response such as evacuation may be warranted. An approach that could be used for real-time emergency guidance to support the declaration of a site emergency and to guide off-site response is presented using observable plant data in the early stages of a severe accident. The approach is based on the simulation of the possible NPP behavior following an initiating event and projects the likelihood of different levels of off-site release of radionuclides from the plant using deep learning (DL) techniques. Training of the DL process is accomplished using results of a large number of scenarios generated with the Analysis of Dynamic Accident Progression Trees/MELCOR/Radiological Assessment System for Consequence Analysis (RASCAL) computer codes to simulate the variety of possible consequences following a station blackout event (similar to the Fukushima accident) for a large pressurized water reactor. The ability of the model to predict the likelihood of different levels of consequences is assessed using a separate test set of MELCOR/RASCAL calculations.