ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ji Hyun Lee, Alper Yilmaz, Richard Denning, Tunc Aldemir
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1035-1042
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2018.1541394
Articles are hosted by Taylor and Francis Online.
An initiating event that disrupts regular nuclear power plant (NPP) operation can result in a variety of different scenarios as time progresses depending on the response of standby safety systems and operator actions to bring the plant to a safe, stable state, or the uncertainties in accident phenomenology. Depending on the severity of the accident and potential magnitude of release of radioactive material into the environment, off-site emergency response such as evacuation may be warranted. An approach that could be used for real-time emergency guidance to support the declaration of a site emergency and to guide off-site response is presented using observable plant data in the early stages of a severe accident. The approach is based on the simulation of the possible NPP behavior following an initiating event and projects the likelihood of different levels of off-site release of radionuclides from the plant using deep learning (DL) techniques. Training of the DL process is accomplished using results of a large number of scenarios generated with the Analysis of Dynamic Accident Progression Trees/MELCOR/Radiological Assessment System for Consequence Analysis (RASCAL) computer codes to simulate the variety of possible consequences following a station blackout event (similar to the Fukushima accident) for a large pressurized water reactor. The ability of the model to predict the likelihood of different levels of consequences is assessed using a separate test set of MELCOR/RASCAL calculations.