ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Haoyu Wang, Andrew Longman, J. Thomas Gruenwald, James Tusar, Richard Vilim
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1003-1020
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2019.1583957
Articles are hosted by Taylor and Francis Online.
Moisture carryover (MCO) is modeled in the General Electric Type-4 boiling water reactor (BWR) using machine-learning methods and data from operating plants. Understanding MCO and the conditions that give rise to an elevated value is important since excessive MCO can damage critical turbine components, can result in elevated dose levels to on-site personnel, and can interfere with late-cycle power management. The analysis of MCO takes into account simplifying reactor symmetries and important geometric dependencies. The plant data are taken from several reactors and were collected over multiple years and multiple fuel cycles. A brief description of the origin of MCO in U.S. BWR plants is given. A machine-learning model is constructed from the data using applicable algorithms and data-reduction techniques. Matching model complexity with available data is one of the more challenging machine-learning tasks. Too many features and too little data will lead to overfitting. The data for each fuel cycle included over 6876 original features, 9 for each fuel bundle. Two approaches are used to reduce the data set into a manageable number of features. The first was an engineering analysis that resulted in the selection of steam quality Q and steam liquid phase velocity VL as the main features driving MCO. Using a Q and a VL for each fuel bundle gives 1528 Q and a VL feature describing the reactor behavior. An analysis of different functional forms of these two variables led to the actual inputs to the neural network model. The second approach involved the use of statistical techniques such as Pearson’s correlation and k-means analysis. The identified groupings of bundles behaved similarly. Treating each grouping as a single feature further reduced the input variable set to a manageable number. A model selection criterion is proposed, and results are presented along with a discussion of related issues.