ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Haoyu Wang, Andrew Longman, J. Thomas Gruenwald, James Tusar, Richard Vilim
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1003-1020
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2019.1583957
Articles are hosted by Taylor and Francis Online.
Moisture carryover (MCO) is modeled in the General Electric Type-4 boiling water reactor (BWR) using machine-learning methods and data from operating plants. Understanding MCO and the conditions that give rise to an elevated value is important since excessive MCO can damage critical turbine components, can result in elevated dose levels to on-site personnel, and can interfere with late-cycle power management. The analysis of MCO takes into account simplifying reactor symmetries and important geometric dependencies. The plant data are taken from several reactors and were collected over multiple years and multiple fuel cycles. A brief description of the origin of MCO in U.S. BWR plants is given. A machine-learning model is constructed from the data using applicable algorithms and data-reduction techniques. Matching model complexity with available data is one of the more challenging machine-learning tasks. Too many features and too little data will lead to overfitting. The data for each fuel cycle included over 6876 original features, 9 for each fuel bundle. Two approaches are used to reduce the data set into a manageable number of features. The first was an engineering analysis that resulted in the selection of steam quality Q and steam liquid phase velocity VL as the main features driving MCO. Using a Q and a VL for each fuel bundle gives 1528 Q and a VL feature describing the reactor behavior. An analysis of different functional forms of these two variables led to the actual inputs to the neural network model. The second approach involved the use of statistical techniques such as Pearson’s correlation and k-means analysis. The identified groupings of bundles behaved similarly. Treating each grouping as a single feature further reduced the input variable set to a manageable number. A model selection criterion is proposed, and results are presented along with a discussion of related issues.