ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Imane Khalil, Quinn Pratt
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 987-991
Technical Note | doi.org/10.1080/00295450.2018.1554026
Articles are hosted by Taylor and Francis Online.
A MATLAB tool that combines computational fluid dynamics with uncertainty quantification (UQ) applied to a two-dimensional FLUENT computational model to predict the heat transfer and the maximum temperature inside a spent fuel assembly is presented in this technical note. The tool is used to establish a connection between MATLAB and ANSYS-FLUENT for the purpose of UQ using the Sandia National Laboratory’s UQ Toolkit. This tool allows users to adapt the UQ methodology to existing ANSYS-FLUENT models in order to automate the quadrature-based simulation process. The novelty of the tool presented in this technical note is its ability to generate results covering a continuous range of input parameters by using polynomial chaos expansions for the representation of random variables and the propagation of uncertainty in computational models.