ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jie Wang, Yanan Li, Yongfeng Wang, Taosheng Li, Zaodi Zhang
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 978-986
Regular Technical Paper | doi.org/10.1080/00295450.2019.1575122
Articles are hosted by Taylor and Francis Online.
A fast neutron radiography (FNR) system based on the high-intensity deuterium-tritium (D-T) fusion generator (HINEG) facility, which employs a high-intensity D-T fusion generator, was designed. To determine the optimal design of the FNR system, the influence of key parameters [the scattered neutron ratio ns (ratio of scattered neutrons and total neutrons at image detection system), collimator ratio L/D, distance between the sample and image detector t, and sample thickness d] on the spatial resolution and image contrast of the system was analyzed using the FLUKA code. The design parameters were optimized to reduce scattering and thus ensure better spatial resolution. The FNR system was constructed for HINEG according to the optimal design parameters, and FNR experiments were conducted to validate the simulation results and evaluate the actual spatial resolution. The experimental results showed that the spatial resolution of this FNR system is approximately 0.5 mm, which is in agreement with the calculation results.