ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William Boyd, Adam Nelson, Paul K. Romano, Samuel Shaner, Benoit Forget, Kord Smith
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 928-944
Regular Technical Paper | doi.org/10.1080/00295450.2019.1571828
Articles are hosted by Taylor and Francis Online.
High-fidelity deterministic transport codes require highly accurate multigroup cross sections (MGXS). Monte Carlo is increasingly cited as a reactor-agnostic approach to MGXS generation since it is unconstrained by the engineering-based approximations that limit the applicability of deterministic MGXS generation tools. This paper introduces a new framework that uses the OpenMC Monte Carlo code to generate MGXS for use in multigroup transport codes. The openmc.mgxs module is built atop OpenMC’s Python application programming interface to process tally data output by the OpenMC executable. This paper validates the module to generate MGXS that enable the multigroup OpenMOC transport code to compute eigenvalues to within 50 pcm and fission rates to within 1% of reference solutions for two heterogeneous pressurized water reactor benchmarks.