ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Hunter Andrews, Supathorn Phongikaroon
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 891-904
Technical Paper – Selected papers from the 2018 ANS Student Conference | doi.org/10.1080/00295450.2018.1551988
Articles are hosted by Taylor and Francis Online.
Four different concentrations of SmCl3 in LiCl-KCl were tested using cyclic voltammetry to determine the diffusion coefficients of Sm(III) and Sm(II) found to be 8.59 × 10−6 ± 1.67 × 10−6 and 8.01 × 10−6 ± 0.98 × 10−6 cm2 s−1, respectively. Ten samples, in the form of salt ingots with SmCl3 concentrations ranging from 0.5 to 10.0 wt% were used for the creation of three laser-induced breakdown spectroscopy (LIBS) calibration models corresponding to 484.4-, 490.5-, and 546.7-nm peaks. Results show that the 490.5-nm peak model had the lowest limit of detection at 0.510 wt%, and all three models had similar root-mean-square errors of calibration values ranging from 0.470 to 0.498 wt%. Four validation samples were then used to test the diffusion and LIBS methods’ ability to estimate concentration. The results of both methods match well with the inductively coupled plasma mass spectroscopy–measured concentrations.