ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Pran K. Paul
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 847-866
Technical Paper | doi.org/10.1080/00295450.2018.1533319
Articles are hosted by Taylor and Francis Online.
This paper presents a comparative study of dose rate calculations for the ES-3100 package with highly enriched uranium (HEU) content for different source configurations using the following computer codes: MCNP, Automated Variance Reduction Generator (ADVANTG)/MCNP, Monaco, and Monaco with Automated Variance Reduction using Importance Calculations (MAVRIC). The Model ES-3100 package was developed at the Y-12 National Security Complex for domestic and international transportation of Type B fissile radioactive material. In this study, six different source configurations (i.e., solid cylinder, cylindrical hemishell, cylindrical shell, rectangular plate, cylindrical rod, and cylindrical segment form) having 36 kg of HEU metal inside the package containment vessel (based on configurations in the ES-3100/HEU safety analysis report for packaging) are evaluated. Dose rates at 1 mm and 1 m from the package surfaces are calculated for these different source configurations. The MCNP and Monaco cases are run without any biasing options to accelerate the convergence. The Consistent Adjoint Driven Importance Sampling and the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) methods developed at the Oak Ridge National Laboratory are implemented in the ADVANTG/MCNP and MAVRIC codes to accelerate the convergence. ADVANTG generates variance reduction parameters using the Denovo code, and MCNP is used with the variance reduction parameters to accelerate the convergence. MAVRIC uses the Denovo code to construct an importance map and a biased source distribution that are supplied to Monaco to accelerate the Monte Carlo simulation. The FW-CADIS option in ADVANTG and MAVRIC is used to accelerate the convergence in this study. The accelerated convergence cases (ADVANTG/MCNP and MAVRIC) are about 100 times faster with 100 times less particle simulation than those cases run without biasing options (analog MCNP and analog Monaco). The MCNP, ADVANTG/MCNP, Monaco, and MAVRIC calculated dose rates at 1 mm and 1 m from the package surfaces for the different source configurations are compared and are found to be in general agreement.