ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Terry A. Ring, Byung Sang Choi, J. Paulo Perez, Brian Van Devener, Randy C. Polson, Douglas Crawford, Dennis Keiser, Daniel Wachs
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 801-818
Technical Paper | doi.org/10.1080/00295450.2018.1542252
Articles are hosted by Taylor and Francis Online.
Scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy have been used to characterize the surface of depleted uranium molybdenum (DU-Mo) alloys as a chemical surrogate to determine potential challenges with the surfaces of manufactured and stored U-Mo foils and powders. Even when stored and shipped in an inert atmosphere, U-Mo has a tenacious surface contamination of oxygen and carbon. The 8 at. % molybdenum (DU-8Mo) powder and 10 at. % molybdenum (DU-10Mo) foil samples have surface contamination of oxygen and carbon in different ratios that is hundreds to thousands of nanometers thick. The DU-8Mo powder sample has been stored in an inert atmosphere and as a result has a lower carbon-to-oxygen ratio at the surface than the DU-10Mo foil sample that was stored in air. This surface contamination has not been removed by up to 20 min of argon ion sputtering nor with 5% hydrogen in argon heat treatment for up to 96 h at 950°C.