ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Faten N. Al Zubaidi, Kyle L. Walton, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 790-800
Technical Paper | doi.org/10.1080/00295450.2018.1542257
Articles are hosted by Taylor and Francis Online.
The effect of long-term oxidation on the total hemispherical emissivity of Type 316L stainless steel (SS 316L) is of interest in nuclear plant safety and is reported on here. ASTM standard C835-06 [American Society for Testing and Materials, 2006] was used for measuring the total hemispherical emissivity of this material for the following surface conditions: (1) “as-received” from the manufacturer (essentially unoxidized) and (2) oxidized in air at 573 K for up to 3000 h. The emissivity of the as-received samples varied within the range from 0.24 at 434 K to 0.34 at 1026 K. Oxidation in air at 573 K for 500 h increased the emissivity range of the oxidized sample from 0.28 at 429 K to 0.38 at 1096 K. There was no further significant change in emissivity observed following an increase in the oxidation time from 500 to 3000 h. It is suspected that the emissivity ceased to increase during the additional oxidation time because of chromium oxide that formed on the SS 316L surface inhibiting further oxidation.