ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Dakota J. Allen, Stuart R. Blair, Marshall G. Millett, Martin E. Nelson
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 755-765
Technical Paper | doi.org/10.1080/00295450.2018.1524228
Articles are hosted by Taylor and Francis Online.
This project investigated the use of uranium nitride (UN) and uranium carbide (UC) reactor fuel and compared their performance to uranium oxide (UO2) in a nuclear reactor for space-based applications. As a baseline for analysis, the Prometheus Project reference reactor module was considered: a gas-cooled fast reactor using highly enriched UO2 fuel with 1 MW of thermal power output and a 15-year core life. An estimate of the temperature feedback effect on reactivity was made for each fuel type at the beginning, middle, and end of core life; results for each fuel were compared. This analysis indicates that UN-fueled reactors may exhibit a stabilizing negative reactivity feedback for increasing temperatures and that this benefit persists in the face of fuel composition changes over core life. The benefit of increased uranium loading density was assessed through a quantitative estimate of overall core weight for each fuel. It was found that weight savings on the order of 1000 kg can be realized for a reactor of this size by using either UC or UN rather than UO2.