ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dakota J. Allen, Stuart R. Blair, Marshall G. Millett, Martin E. Nelson
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 755-765
Technical Paper | doi.org/10.1080/00295450.2018.1524228
Articles are hosted by Taylor and Francis Online.
This project investigated the use of uranium nitride (UN) and uranium carbide (UC) reactor fuel and compared their performance to uranium oxide (UO2) in a nuclear reactor for space-based applications. As a baseline for analysis, the Prometheus Project reference reactor module was considered: a gas-cooled fast reactor using highly enriched UO2 fuel with 1 MW of thermal power output and a 15-year core life. An estimate of the temperature feedback effect on reactivity was made for each fuel type at the beginning, middle, and end of core life; results for each fuel were compared. This analysis indicates that UN-fueled reactors may exhibit a stabilizing negative reactivity feedback for increasing temperatures and that this benefit persists in the face of fuel composition changes over core life. The benefit of increased uranium loading density was assessed through a quantitative estimate of overall core weight for each fuel. It was found that weight savings on the order of 1000 kg can be realized for a reactor of this size by using either UC or UN rather than UO2.