ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Can Liao, Haori Yang, Zhengzhi Liu, Jason P. Hayward
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 736-747
Technical Paper | doi.org/10.1080/00295450.2018.1522885
Articles are hosted by Taylor and Francis Online.
This work presents the design of a position-sensitive detector that we are evaluating for cosmic-ray muon imaging. The position-sensitive detector consists of an EJ-200 plastic scintillator panel that is 32 × 32 × 2.5 cm in dimension. A quantity of 32 parallel grooves, each 2 mm wide and 4 mm deep with a pitch of 1 cm, are carved on the top and bottom sides, in perpendicular orientation, of a scintillator panel. Two wavelength shifting optical fibers are embedded in each groove for light collection and transport. The optical fibers from each channel are coupled to one pixel of a Hamamatsu H8500C multi-anode photomultiplier tube. An encoding technique using a one-dimensional resistor network was developed to reduce the number of required readout channels for position determination. The position calibration was performed with a blue light emitting diode. The detector was shown to achieve position resolution of ~1 cm (sigma).