ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Can Liao, Haori Yang, Zhengzhi Liu, Jason P. Hayward
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 736-747
Technical Paper | doi.org/10.1080/00295450.2018.1522885
Articles are hosted by Taylor and Francis Online.
This work presents the design of a position-sensitive detector that we are evaluating for cosmic-ray muon imaging. The position-sensitive detector consists of an EJ-200 plastic scintillator panel that is 32 × 32 × 2.5 cm in dimension. A quantity of 32 parallel grooves, each 2 mm wide and 4 mm deep with a pitch of 1 cm, are carved on the top and bottom sides, in perpendicular orientation, of a scintillator panel. Two wavelength shifting optical fibers are embedded in each groove for light collection and transport. The optical fibers from each channel are coupled to one pixel of a Hamamatsu H8500C multi-anode photomultiplier tube. An encoding technique using a one-dimensional resistor network was developed to reduce the number of required readout channels for position determination. The position calibration was performed with a blue light emitting diode. The detector was shown to achieve position resolution of ~1 cm (sigma).