ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. Chaudhury, S. A. Ansari, P. K. Mohapatra, D. M. Noronha, J. S. Pillai, Ashutosh Srivastava, I. C. Pius
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 727-735
Technical Paper | doi.org/10.1080/00295450.2018.1510699
Articles are hosted by Taylor and Francis Online.
Laboratory-scale studies were carried out to develop an analytical methodology for the processing of plutonium-bearing analytical laboratory waste at liter scale using hollow fiber–supported liquid membrane (HFSLM) technique by selective recovery of plutonium from uranium, americium, and other laboratory chemicals. In the first stage, uranium and plutonium were selectively transported from the feed to the receiver phase using 30% tri-n-butyl phosphate/n-dodecane which was used as the carrier in HFSLM. From the thus separated uranium and plutonium mixture, Pu(III) was selectively precipitated as ammonium plutonium(III)-oxalate [NH4Pu(C2O4)2 · 3H2O], leaving most of the uranium in the supernatant solution. A combination of HFSLM method followed by ammonium plutonium–oxalate precipitation is faster, gives lower radiation exposure to working personnel, and generates lesser volume of secondary waste as compared to traditional precipitation/ion-exchange technique. Furthermore, the present methodology signifies its importance in providing a very good yield of Pu recovery (>99%) from waste solution.