ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hajime Kabashima, Fumio Kasahara
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 694-707
Technical Paper | doi.org/10.1080/00295450.2018.1518556
Articles are hosted by Taylor and Francis Online.
Large-scale electric discharges events called high energy arcing faults (HEAF) have been reported in a nonnegligible number at nuclear power stations (NPSs) worldwide. If a HEAF occurs, the pressure and temperature in the electrical equipment rise rapidly, causing an explosive phenomenon with destructive force that results in serious damage to the equipment. In addition, a HEAF may cause a fire, which would have a serious impact on cables and other components in and around the equipment with the potential to disrupt power, instruments, and control in the plant.
In order to investigate the HEAF progression and to understand well the phenomena involved, the Regulatory Standard and Research Department in the Secretariat of the Nuclear Regulation Authority conducted a series of experiments (HEAF tests). High-energy electric arcs were generated at the facility simulating the design and operating conditions of the medium-voltage metalclad switchgears (M/Cs) at Unit 1 of the Onagawa NPS where the fire subsequently spread to multiple M/Cs via cable duct due to HEAF.
The test data have been obtained for the M/Cs on the threshold values of the arc energy that results in ensuing fires and on the characteristics of high-energy arcs.
On the basis of the knowledge obtained by the test results, measures for prevention of ensuing fire and mitigation of explosion are proposed as a new requirement for fire protection regulation of Japanese NPSs. Amendments to the regulatory requirements were issued on August 8, 2017 and enforced on the same day.
This paper summarizes the information on the high-energy arc characteristics and arc energies resulting in ensuing fires that was used as the basis of the new requirements and discusses the trend of arc power.