ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Hajime Kabashima, Fumio Kasahara
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 694-707
Technical Paper | doi.org/10.1080/00295450.2018.1518556
Articles are hosted by Taylor and Francis Online.
Large-scale electric discharges events called high energy arcing faults (HEAF) have been reported in a nonnegligible number at nuclear power stations (NPSs) worldwide. If a HEAF occurs, the pressure and temperature in the electrical equipment rise rapidly, causing an explosive phenomenon with destructive force that results in serious damage to the equipment. In addition, a HEAF may cause a fire, which would have a serious impact on cables and other components in and around the equipment with the potential to disrupt power, instruments, and control in the plant.
In order to investigate the HEAF progression and to understand well the phenomena involved, the Regulatory Standard and Research Department in the Secretariat of the Nuclear Regulation Authority conducted a series of experiments (HEAF tests). High-energy electric arcs were generated at the facility simulating the design and operating conditions of the medium-voltage metalclad switchgears (M/Cs) at Unit 1 of the Onagawa NPS where the fire subsequently spread to multiple M/Cs via cable duct due to HEAF.
The test data have been obtained for the M/Cs on the threshold values of the arc energy that results in ensuing fires and on the characteristics of high-energy arcs.
On the basis of the knowledge obtained by the test results, measures for prevention of ensuing fire and mitigation of explosion are proposed as a new requirement for fire protection regulation of Japanese NPSs. Amendments to the regulatory requirements were issued on August 8, 2017 and enforced on the same day.
This paper summarizes the information on the high-energy arc characteristics and arc energies resulting in ensuing fires that was used as the basis of the new requirements and discusses the trend of arc power.