ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Victor C. Leite, Roberto Schirru, Miguel Mattar Neto
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 637-645
Technical Paper | doi.org/10.1080/00295450.2018.1516056
Articles are hosted by Taylor and Francis Online.
One of the main roles of the nuclear fuel bundle spacer grid (SG) is to safely support the fuel rods (FRs) through springs and dimples. The SG design is an important matter for nuclear power plant operation when a damaged FR could release fission products. For this work, Particle Swarm Optimization (PSO) is applied to define the geometries of the springs and dimples existing in a SG. Other algorithms had been used to optimize these geometries but not PSO. This paper proposes a PSO variable model and its fitness function in order to define an optimized geometry for the spring and the dimple so that they can provide sufficient gripping forces and minimize stresses. The implemented PSO was able to generate geometries of springs and dimples with stresses minimized and with a specific required stiffness value. The results of these two characteristics are compared with other results in the literature. For further work, PSO will be used to optimize other important design characteristics of a SG: grid-to-rod fretting, coolant flow-induced vibration, and the function of mixing coolant.