ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert E. Spears, Efe G. Kurt, Justin L. Coleman
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 624-636
Technical Note | doi.org/10.1080/00295450.2018.1507393
Articles are hosted by Taylor and Francis Online.
Seismic soil-structure interaction (SSI) analysis of nuclear facilities is an important consideration during design and retrofit. SSI tools used in the nuclear industry are currently based on an equivalent linear (EL) approach. Procedures for developing input ground motion for EL approaches are well established. However, the procedures for establishing input ground motion for nonlinear soil-structure interaction (NLSSI) analysis of nuclear facilities are not well established. A collaborative research group at Idaho National Laboratory has recently developed analytical methods and numerical tools for using NLSSI analysis for nuclear facility seismic calculations. NLSSI analysis for a nuclear facility allows for calculation of seismic wave motion through a near-field soil domain using either (a) vertically propagating shear and compressive waves, which is the current industry practice, or (b) a three-dimensional nonvertical wave field. This technical note presents an iterative procedure for establishing outcrop motion at a depth in the soil column for NLSSI analysis that uses vertically propagating shear waves.
The approach presented in this technical note starts with a known ground motion at the surface that is deconvolved to a depth, and then the obtained motion is convolved up to a different desired location of input for the NLSSI model. To demonstrate the validity of the approach, a finite element soil column that is representative of a nuclear facility site in the United States is used to produce compatible outcrop seismic time series for reduced nonlinear soil mesh depths. The developed approach for reducing the nonlinear soil column model depth is a two-step iterative method. The first step is establishing an outcrop time series at the lowest depth considered that produces the top-of-soil response spectrum of an actual recorded ground motion. The second step is providing compatible outcrop time series at a shallower depth based on the information from the first step.
A comparison of the 5% damped response spectrum from the resulting acceleration time series based on the iterated outcrop motions and the original acceleration time series is conducted. The study shows that the proposed iterative approach produced comparable results within 1% range of the original recorded time series results when sufficient iterations were performed.