ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Puspalata, S. Sumathi, V. Balaji, S. Rangarajan, S. Velmurugan
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 592-604
Technical Paper | doi.org/10.1080/00295450.2018.1509586
Articles are hosted by Taylor and Francis Online.
The main objective of this work is to see the feasibility of using an electrochemical ion-exchange process in line with decontamination for removal of radioactive metal ions from simulated decontaminated solution/metal ion–loaded cation-exchange resin. This could extend the service period of resin, and the volume of radioactive resin (organic) waste generation could be minimized. Simulated decontamination solutions/spent resins were used in the middle section of a three-compartment cell separated by cation-permeable Nafion membranes. Metal ions from this central compartment permeated through the membrane and got deposited on the cathode by application of potential. Process parameters like applied voltage, interelectrode distance, pH, decontamination formulations, and type of membrane were optimized for efficient transport of metal ions. The resin life was observed to be extended by 5 h by an electrochemical regeneration process with Nafion membrane N115. The transport process, as monitored by the change in metal ion concentration in the cathodic compartment, was observed to pass through a maximum. Maximum metal ion removal was observed with formic acid/formate formulation indicating that the presence of acidity in the anodic compartment has a synergistic effect on the transport process. The cathodic compartment deposit was characterized by X-ray diffraction, laser Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray analysis.