ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
R. Puspalata, S. Sumathi, V. Balaji, S. Rangarajan, S. Velmurugan
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 592-604
Technical Paper | doi.org/10.1080/00295450.2018.1509586
Articles are hosted by Taylor and Francis Online.
The main objective of this work is to see the feasibility of using an electrochemical ion-exchange process in line with decontamination for removal of radioactive metal ions from simulated decontaminated solution/metal ion–loaded cation-exchange resin. This could extend the service period of resin, and the volume of radioactive resin (organic) waste generation could be minimized. Simulated decontamination solutions/spent resins were used in the middle section of a three-compartment cell separated by cation-permeable Nafion membranes. Metal ions from this central compartment permeated through the membrane and got deposited on the cathode by application of potential. Process parameters like applied voltage, interelectrode distance, pH, decontamination formulations, and type of membrane were optimized for efficient transport of metal ions. The resin life was observed to be extended by 5 h by an electrochemical regeneration process with Nafion membrane N115. The transport process, as monitored by the change in metal ion concentration in the cathodic compartment, was observed to pass through a maximum. Maximum metal ion removal was observed with formic acid/formate formulation indicating that the presence of acidity in the anodic compartment has a synergistic effect on the transport process. The cathodic compartment deposit was characterized by X-ray diffraction, laser Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray analysis.