ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Hangbok Choi, Myunghee Choi, Ryan Hon
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 486-505
Technical Paper | doi.org/10.1080/00295450.2018.1495001
Articles are hosted by Taylor and Francis Online.
Calculations have been conducted for the KRITZ-2 (KRITZ-LWR-RESR-001/002/003) and the Fast Flux Test Facility (FFTF) (FFTF-LMFR-RESR-001) Nuclear Energy Agency benchmark problems using the PARCS reactor simulation code with lattice parameters generated by the DRAGON reactor physics code and with the MCNP6 Monte Carlo code. The benchmark analyses examined the DRAGON cross-section library, PARCS energy group structure, DRAGON fuel assembly modeling, and nuclide self-shielding effect. For KRITZ-2, the PARCS 2-group core calculations with a DRAGON 361-group library based on ENDF/B-VII.1 reproduced the benchmark keff with a root-mean-square (rms) error of 0.19% δk. DRAGON/PARCS also predicted the fission rates within 5%. The MCNP results are consistent with the DRAGON/PARCS results but with a small underestimation when compared to the benchmark value. For FFTF, the PARCS 33-group core calculations underpredicted the benchmark keff by 0.19% δk while the MCNP calculation overpredicted the benchmark keff by 0.23% δk. The neutron spectrum distributions calculated by PARCS and MCNP are consistent with measured data. Since the energy boundary values of the measured neutron spectrum are not available, the calculated spectra could not be directly compared to the measured value. The DRAGON/PARCS solution to a numerical benchmark of a gas-cooled fast reactor (GFR), i.e., the Energy Multiplier Module, predicted the keff and assembly power with 0.46% δk and 3.7% rms error, respectively, when compared to the MCNP simulation. The benchmark calculations of the selected thermal and fast reactors have shown that DRAGON/PARCS simulates small reactor cores with good accuracy.