ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Seung Min Woo, Heukjin Boo, Sunil S. Chirayath, Keunhong Jeong
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 464-473
Technical Paper | doi.org/10.1080/00295450.2018.1500074
Articles are hosted by Taylor and Francis Online.
Under normal operating conditions, a pyroprocessing facility removes highly radioactive and nonradioactive fission product waste from used nuclear reactor fuel to recycle the remaining uranium (U), plutonium (Pu), and other actinides contained in it. The products from this facility are separate ingots of U and mixed transuranic elements (TRUs)–uranium (TRU-U). Uranium in both ingots will be depleted U with 235U enrichment less than 1%. The TRU-U ingot will contain neptunium, Pu, americium (Am), and curium (Cm) mixed with U with an approximate TRU:U ratio of 1:1. Four scenarios of nuclear material diversion by potential misuse of the pyroprocessing facility operations are analyzed and compared with the scenario of normal operating condition when the electrowinning process or the TRU-U ingot manufacturing process is misused. These diversion scenario analyses are carried out to understand the proliferation potential and to recommend safeguards measures. The four scenarios of nuclear material diversion analyzed are (1) 50 g Pu, (2) 100 g Pu, (3) 200 g Pu, and (4) all Pu, i.e., 452 g in the 1-kg TRU-U ingot. Plutonium cannot be diverted by itself because other TRUs (Am and Cm) will be simultaneously extracted with Pu. This is because the reduction potentials of those actinides are not distinguishably different from that of Pu on a liquid cadmium cathode of the electrowinning step of the pyroprocess. Hence, in addition to Pu, simultaneous diversion of respective amounts of Am and Cm for the four diversion scenarios are considered. The diversion scenario analysis also considered the concealment of Pu and Cm removal from the TRU-U ingot by adding an equivalent amount of 252Cf to replenish the neutron source emissions. These five scenarios (four nuclear material diversion scenarios and one normal operation scenario) are modeled and simulated using the Monte Carlo N-Particle (MCNP6) radiation transport computer code by incorporating the model of a NaI gamma radiation detection system. The results show that the presence and absence of Pu in the TRU-U ingot can be confirmed by the NaI gamma radiation detection system. However, identifying the presence of U in the TRU-U ingot is difficult using the NaI gamma radiation detection system due to interference from TRU gamma radiation. To identify the U presence in the TRU-U ingot, an application of nuclear magnetic resonance (NMR) is studied. The NMR technology employs a numerical calculation approach based on density functional theory (DFT) simulation. The DFT calculation results show that the detection of U in a pyroprocess is feasible by NMR technology. In addition, these four nuclear material diversion scenarios are analyzed through MCNP6 simulations by incorporating the model of a coincidence neutron detection system. To conceal the nuclear material diversion, the simulations are performed by replacing the diverted Pu and Cm by an appropriate mass of 252Cf neutron source that is equivalent to the neutron source strengths of the diverted mass. Simulation results show that this concealment (misuse) results in a deceived Pu mass estimate in the TRU-U ingot if the Pu-to-244Cm–ratio method (proposed method in the literature) is used.