ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Pegah Farshadmanesh, Tatsuya Sakurahara, Seyed Reihani, Ernie Kee, Zahra Mohaghegh
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 442-463
Technical Paper | doi.org/10.1080/00295450.2018.1494439
Articles are hosted by Taylor and Francis Online.
A major challenge facing the nuclear energy industry is to remain competitive under current market conditions. Utility operators are searching for innovative methods to reduce nuclear power plant (NPP) operation and maintenance costs while complying with safety and reliability requirements. To support these goals, the authors suggest a streamlined approach that implements a conservative risk-informed method to reduce the costs of satisfying emergent regulatory requirements. As a streamlined approach, the Risk-informed Over Deterministic (RoverD) method was developed by some of the authors of the current paper to resolve the concerns associated with Generic Safety Issue 191 (GSI-191). The RoverD method is designed around U.S. Nuclear Regulatory Commission Regulatory Guide 1.174 (RG 1.174), which defines “risk-informed” regulation as comprising a blend of risk-based and deterministically based elements. This paper offers the Safety Hazard Analysis for earthquaKE (SHAKE)–RoverD (SHAKE-RoverD) methodology, an extension of the original RoverD methodology developed for GSI-191, to evaluate the impact of an increased seismic hazard on the performance of NPP protective systems. SHAKE-RoverD aims to reduce the cost required for developing, validating, and documenting detailed fragility curves in seismic probabilistic risk assessment by using deterministic fragility curves. The SHAKE-RoverD methodology assesses whether an increase in a seismic hazard would result in an unacceptable increase in NPP risk. If the conservative estimate of plant risk, computed by the streamlined approach, satisfies the regulatory acceptance criteria (e.g., Regulatory Guide 1.174), the plant likely would not need to make a design change (as long as defense in depth and adequate safety margin are satisfied); therefore, the use of streamlined methodology could lead to significant cost savings for the utility operator. Future work will advance SHAKE-RoverD and analyze risk management strategies based on this method.