ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Charles W. Forsberg
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 377-396
Technical Paper | doi.org/10.1080/00295450.2018.1518555
Articles are hosted by Taylor and Francis Online.
In a low-carbon world (nuclear, wind, solar, and hydro) there is the need for assured dispatchable electricity to replace the historical role of fossil fuels. Base-load reactors can provide variable electricity to the grid by (1) sending some of their output (steam) to storage at times of low electricity prices and (2) using stored heat to produce added peak electricity at times of high electricity prices. Heat storage (steam accumulators, sensible heat, etc.) is less expensive than electricity storage (batteries, hydro pumped storage, etc.). The added cost of incrementally larger or standalone turbine generators for peak electricity production is small. However, energy storage systems (heat or electricity) can’t provide assured capacity for extreme events, be it supply side (extended low-wind or low-solar conditions in systems with high wind or solar capacity) or demand side (long periods of cold or hot weather). With heat storage systems there is the option to provide peak electricity output when heat storage is depleted by heat addition with a water-tube boiler using natural gas, biofuels, or ultimately hydrogen. Fuel consumption for assured peaking capacity is small because most of the time the heat storage system meets peak electricity demands. The same systems enable reliable low-cost heat production for industry. Such systems enable an all nuclear or nuclear/hydro/wind/solar/geothermal low-carbon electricity grid.