ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Charles W. Forsberg
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 377-396
Technical Paper | doi.org/10.1080/00295450.2018.1518555
Articles are hosted by Taylor and Francis Online.
In a low-carbon world (nuclear, wind, solar, and hydro) there is the need for assured dispatchable electricity to replace the historical role of fossil fuels. Base-load reactors can provide variable electricity to the grid by (1) sending some of their output (steam) to storage at times of low electricity prices and (2) using stored heat to produce added peak electricity at times of high electricity prices. Heat storage (steam accumulators, sensible heat, etc.) is less expensive than electricity storage (batteries, hydro pumped storage, etc.). The added cost of incrementally larger or standalone turbine generators for peak electricity production is small. However, energy storage systems (heat or electricity) can’t provide assured capacity for extreme events, be it supply side (extended low-wind or low-solar conditions in systems with high wind or solar capacity) or demand side (long periods of cold or hot weather). With heat storage systems there is the option to provide peak electricity output when heat storage is depleted by heat addition with a water-tube boiler using natural gas, biofuels, or ultimately hydrogen. Fuel consumption for assured peaking capacity is small because most of the time the heat storage system meets peak electricity demands. The same systems enable reliable low-cost heat production for industry. Such systems enable an all nuclear or nuclear/hydro/wind/solar/geothermal low-carbon electricity grid.