ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pan Wu, David Novog
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 364-376
Technical Paper | doi.org/10.1080/00295450.2018.1495000
Articles are hosted by Taylor and Francis Online.
The CTF code is a subchannel thermal-hydraulic code developed based on the COBRA-TF code. In this work, the CTF code is used to predict the single- and two-phase heat transfer, pressure drop, onset of nucleate boiling, and dryout heat flux in water at several temperatures and pressures under steady-state and transient conditions. The conditions cover a range of pressures from 2 to 6 MPa, flows from 1000 to 2500 kg/(m2∙s), and inlet subcooling from 40°C to 70°C. Experimental heat balance tests show agreement between coolant enthalpy change and the electrical power with a difference of no more than 1.0%. Steady-state experiments were performed at constant inlet conditions in a cylindrical directly heated Inconel test section where the wall temperatures were measured at each power level. For each steady-state test, the experimental boiling curve is compared to CTF predictions. Transient experiments were performed by initiating a blowdown from the test section outlet plenum using a fast-acting valve with an open time of less than 100 ms. The time of dryout in these transient experiments is compared with the CTF results to clarify the pressure transient effect on the dryout prediction.