ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Siying Dong, Wei Liu, Yang Liu, Jianqiang Shan
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 352-363
Technical Paper | doi.org/10.1080/00295450.2018.1491182
Articles are hosted by Taylor and Francis Online.
In most subchannel analysis codes, spacer grids are simulated using an effective loss coefficient that can account only for the spacer grid’s mean axial effect on the pressure drop. Since the mixing vane spacer grid (MVG) in a rod bundle has great influence on local flow fields, neglecting the effect of mixing vanes will degrade fidelity and resolution in thermal-hydraulic calculation. This paper focuses on improving the spacer grid model in subchannel analysis. First, cross-flow mixing effects of MVGs are accounted for by applying the distributed resistance method. By choosing resistance correlation appropriately and considering the geometric dimensions of mixing vanes, the source term of mixing vanes can be represented quantitatively in the axial and lateral momentum equations of a subchannel analysis code. Second, the Carlucci model is used to calculate mixing rates, and obstruction factor Fobs is introduced to consider turbulent mixing effects caused by spacer grids. The improved MVG cross-flow model and turbulent mixing model are implemented in the subchannel code ATHAS. Validation is provided for the 5 × 5 rod bundle experiments provided by Karoutas et al. [Proc. 7th Int. Mtg. Nuclear Reactor Thermal-Hydraulics (NURETH-7), Saratoga, New York (1995)] and high-quality experimental data provided by the Organisation for Economic Co-operation and Development/U.S. Nuclear Regulatory Commission Pressurized Water Reactor Subchannel and Bundle Test (PSBT) benchmark to demonstrate their effects and accuracy. From the validation, it can be concluded that the calculated lateral velocities agree well with those provided by the experimental data. In addition, the improved cross-flow and turbulent mixing models significantly increase the accuracy of predictions of exit subchannel coolant temperatures, with reduction in root-mean-square error to be 2.27 K.