ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Xingang Zhao, Aaron J. Wysocki, Koroush Shirvan, Robert K. Salko
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 338-351
Technical Paper | doi.org/10.1080/00295450.2018.1507221
Articles are hosted by Taylor and Francis Online.
As part of the Consortium for Advanced Simulation of Light Water Reactors, the subchannel code CTF is being used for single-phase and two-phase flow analysis under light water reactor operating conditions. Accurate determination of flow distribution, pressure drop, and void content is crucial for predicting margins to thermal crisis and ensuring more efficient plant performance. In preparation for the intended applications, CTF has been validated against data from experimental facilities comprising the General Electric (GE) 3 × 3 bundle, the boiling water reactor full-size fine-mesh bundle tests (BFBTs), the Risø tube, and the pressurized water reactor subchannel and bundle tests (PSBTs). Meanwhile, the licensed, well-recognized subchannel code VIPRE-01 was used to generate a baseline set of simulations for the targeted tests and solution parameters were compared to the CTF results.
The flow split verification problem and single-phase GE 3 × 3 results are essentially in perfect agreement between the two codes. For the two-phase GE 3 × 3 cases, flow and quality discrepancies arise in the annular-mist flow regime, yet significant improvement is observed in CTF when void drift and two-phase turbulent mixing enhancement are considered. The BFBT pressure drop benchmark shows close agreement between predicted and measured results in general, although considerable overprediction by CTF is observed at relatively high void locations of the facility. This overestimation tendency is confirmed by the Risø cases. While overall statistics are satisfactory, both BFBT and PSBT bubbly-to-churn flow void contents are markedly overpredicted by CTF.
The issues with two-phase closures such as turbulent mixing, interfacial and wall friction, and subcooled boiling heat transfer need to be addressed. Preliminary sensitivity studies are presented herein, but more advanced models and code stability analysis require further investigation.