ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Cen Wei, Bao-Wen Yang, Bin Han, Aiguo Liu
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 328-337
Technical Paper | doi.org/10.1080/00295450.2018.1510266
Articles are hosted by Taylor and Francis Online.
Mixing vanes attached to a space grid play an important role in heat transfer enhancement, thus increasing critical heat flux. Subchannel analysis and computational fluid dynamics (CFD) are usually applied to simulate the coolant flow behavior in a fuel assembly. In subchannel analysis, the mixing effect, mainly turbulent mixing, produced by mixing vane grids (MVGs) is represented by a coefficient β without considering flow direction and mixing vane arrangement. However, in CFD computation, the mixing effect can be simulated more closely. The objective of this paper is to evaluate the mixing coefficient β used in subchannel analysis by a CFD code. Then, the effects of the three MVGs are compared qualitatively and quantitatively.
Through the analysis, an effective mixing coefficient adopted in the subchannal codes should be related to the vane arrangement. Improvements for β are needed to better reflect the true mixing function from the spacer grid relevant to its mixing vane arrangement. Besides the lateral velocity distribution, secondary flow intensity, temperature distribution, and thermal nonuniformity are different for different vane arrangement patterns.