ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Cen Wei, Bao-Wen Yang, Bin Han, Aiguo Liu
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 328-337
Technical Paper | doi.org/10.1080/00295450.2018.1510266
Articles are hosted by Taylor and Francis Online.
Mixing vanes attached to a space grid play an important role in heat transfer enhancement, thus increasing critical heat flux. Subchannel analysis and computational fluid dynamics (CFD) are usually applied to simulate the coolant flow behavior in a fuel assembly. In subchannel analysis, the mixing effect, mainly turbulent mixing, produced by mixing vane grids (MVGs) is represented by a coefficient β without considering flow direction and mixing vane arrangement. However, in CFD computation, the mixing effect can be simulated more closely. The objective of this paper is to evaluate the mixing coefficient β used in subchannel analysis by a CFD code. Then, the effects of the three MVGs are compared qualitatively and quantitatively.
Through the analysis, an effective mixing coefficient adopted in the subchannal codes should be related to the vane arrangement. Improvements for β are needed to better reflect the true mixing function from the spacer grid relevant to its mixing vane arrangement. Besides the lateral velocity distribution, secondary flow intensity, temperature distribution, and thermal nonuniformity are different for different vane arrangement patterns.