ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Stephen M. Bajorek, Fan-Bill Cheung
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 307-327
Technical Paper | doi.org/10.1080/00295450.2018.1510697
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission has been conducting thermal-hydraulic research using the Rod Bundle Heat Transfer (RBHT) facility at the Pennsylvania State University since 2001. The facility has been used for five individual test programs: forced reflood, steam cooling, mixture level swell, dispersed droplet injection, and oscillatory reflood test series. While rod bundle thermal hydraulics has been extensively studied in the past, the RBHT data have provided new insights into rod bundle phenomena especially on the effects of spacer grids. This paper provides a summary of the RBHT test program and discusses some of the major findings from this research with the emphasis on reflood thermal hydraulics and the effect of spacer grids.
Of particular interest are data that enable model and correlation development. Recent efforts have focused on the evaluation of RBHT data and development of improved models and correlations suitable for systems thermal-hydraulic codes such as TRACE and RELAP. Because of detailed instrumentation on and about spacer grids, RBHT data have enabled improved models for convective heat transfer enhancement and droplet breakup. New correlations for the inverted annular and the inverted slug film boiling regimes have also been developed as an initial step toward an improved model for dispersed droplet film boiling.