ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Guanyi Wang, Yikuan Yan, Shanbin Shi, Zhuoran Dang, Xiaohong Yang, Mamoru Ishii
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 297-306
Technical Paper | doi.org/10.1080/00295450.2018.1493317
Articles are hosted by Taylor and Francis Online.
As one of the future directions of nuclear energy development, small modular reactor (SMR) designs meet the demands of safety, sustainability, and efficiency by eliminating circulating pumps and using natural circulation–driven flows to transfer fission energy to power. However, natural circulation–driven flows could be affected by two-phase-flow instability that may occur during accidental scenarios of pressurized water reactor (PWR)-type SMRs due to relatively small driving force. In view of the influence of two-phase-flow instability during accident transients for a PWR-type SMR, experiments are performed in a well-scaled test facility to investigate potential thermal-hydraulic flow instabilities during blowdown events. The test facility has a height of 3.44 m, and the operating pressure limit is 1.0 MPa. The scaling analyses ensure that the scaled phenomena, i.e., depressurization of the reactor pressure vessel (RPV) and emergency core cooling system valve actuation, could be accurately simulated in the test facility. Important thermal-hydraulic parameters including RPV pressure, containment pressure, local void fraction and temperature, pressure drop, and natural circulation flow rate are measured and analyzed during the blowdown events. Test results show that throughout the experiment the liquid level is always maintained above the heated core and the RPV pressure decreases. Oscillations of the natural circulation flow rate, water level, and pressure drop are observed during blowdown transients. Specific reasons for and mechanisms of the observed instability phenomena are discussed.