ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Wei Xu, Jianhua Xia, Xiaojing Liu, Xu Cheng, Wei Zeng
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 281-296
Technical Paper | doi.org/10.1080/00295450.2018.1457887
Articles are hosted by Taylor and Francis Online.
Bottom reflooding is the third phase when a large-break loss-of-coolant accident occurs. Due to the complexity and importance, especially in a distinct narrow rectangular channel, various research methods can be utilized to understand the whole process. Test facility is established to figure out the thermal-hydraulic behaviors during bottom reflooding, and the acquisition of accurate solid temperature is essential. The inverse heat transfer problem method is applied to take full advantage of experimental data. In addition, a bottom reflooding transient (BRT) code is utilized to calculate various parameters conveniently. A three-dimensional heat conduction equation for a transient state is solved implicitly to obtain solid temperature distribution, surface heat flux, and heat transfer coefficient at the cooling surface. The simulation results of the BRT code are compared with that of RELAP5, an available system code, and the experimental results. A conclusion that can be derived is that the BRT code shows good applicability of simulating bottom reflooding in a narrow rectangular channel.