ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Yalan Qian, Tingting Zhang, Jingjing Li, Yuchen Song, Junlian Yin, Dezhong Wang, Hua Li, Wei Liu
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 272-280
Technical Paper | doi.org/10.1080/00295450.2018.1486161
Articles are hosted by Taylor and Francis Online.
The gas-liquid separator is a key component in the gas removal system of the Thorium Molten Salt Reactor. Phase separation is driven by a swirling flow, and the fundamental principle is that dispersed bubbles are accumulated and coalesced into an air core to realize separation from the liquid phase. In this paper, simultaneous particle image velocimetry (PIV) and pulsed shadowgraphy techniques are applied to characterize the two-phase-flow patterns in the evolutionary process of the air core. The PIV technique utilizes fluorescent particles as tracers in the liquid flow field, and a charge coupled device (CCD) camera records the planar laser-induced fluorescence signal of the particles. Another camera simultaneously detects the shadow and motion of the air core via backlighting from an array of infrared light-emitting diodes. The signals originating from the different phases are separated by a beam splitter with a dichroic filter and optical filters, and only undisturbed signals from the shadow of the air core and fluorescence tracer particles of the fluid are effectively captured by the two CCD cameras, respectively. Experimental data are carried out for three Reynolds numbers Re for a range of outlet pressures Pout. The morphology of the air core tail periodically transforms from a linear type to a single-helix type to a double-helix type before reaching a stable state at the critical outlet pressures Pcout. The analysis of gas-liquid flow patterns indeed indicates that axial velocity has a strong influence on the air core evolution. The periodic fluctuation results from the magnitude and direction of axial velocity.