ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Christophe Journeau, Laurence Aufore, Léonie Berge, Claude Brayer, Nathalie Cassiaut-Louis, Nicolas Estre, Frédéric Payot, Pascal Piluso, Jean-Christophe Prele, Shifali Singh, Magali Zabiégo, Eric Pluyette, Frédéric Serre, Béatrice Teisseire
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 239-247
Technical Paper | doi.org/10.1080/00295450.2018.1479580
Articles are hosted by Taylor and Francis Online.
Fuel-coolant interaction (FCI) is an important issue for the assessment of severe accident safety for both sodium-cooled fast reactors (SFRs) and pressurized water reactors (PWRs). For the ASTRID SFR demonstrator, FCI is a key phenomenon affecting the relocation of molten fuel in engineered discharge tubes between the core region and the core catcher plenum. FCI controls jet fragmentation and debris bed formation and raises the issue of potentially energetic vapor explosions in the ASTRID lower head. In this frame, experimental data will be necessary to validate SCONE, the fuel-sodium interaction code under development at CEA. For PWRs, one of the configurations of interest lies within the residual case where in-vessel retention would fail. In this case, it is expected that a light metallic layer would be the first to interact with water, before a heavier oxide melt discharge. Here, steam explosion and debris bed formation are the two major points of interest. Based on the experimental expertise gained from the KROTOS facility and its X-ray radioscopic imaging system, new test facilities have been designed to carry out prototypic (depleted uranium–containing) corium interactions with either sodium or water in PLINIUS2, the CEA future large-mass experimental platform dealing with masses above 100 kg. Some test sections have been specially designed to ensure proper visualization of the fuel, liquid coolant, and vapor phases by an improved X-Ray imaging system. This paper presents the future PLINIUS 2 platform as well as the experimental programs foreseen to study both water-corium and sodium-corium interactions.