ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sunming Qin, Benedikt Krohn, John Downing, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 213-225
Technical Paper | doi.org/10.1080/00295450.2018.1470864
Articles are hosted by Taylor and Francis Online.
Turbulent round free jets are one of the most common jet types, which have been intensively studied in the research community for over 90 years. Due to its characteristics of momentum transport in free shear layers, this type of jet is widely used in several industrial applications varying from nuclear reactor safety analysis to aerospace jet engine designs. Focusing on close-to-jet (near-field) and self-similar regions, the entrainment and momentum transport can be properly described by the Reynolds numbers of the flow fields.
To establish a nonconfined free jet, an experimental facility was built with a jet nozzle diameter of 12.7 mm, located at the bottom of a cubic tank with a 1-m side length. The jet flow is realized by a servo-motor-driven piston to avoid possible fluctuations introduced by other motor options. Nominal jet Reynolds numbers range from 5000 up to 22 500. High-speed and time-resolved particle imaging velocimetry techniques are used to measure the velocity fields in the vertical midplane of the jet for both investigated flow fields. The adopted setup has a spatial resolution of 209 × 209 µm2 for near-field regions and 684 × 684 µm2 for self-similar regions and thus covers the Taylor microscale for all cases presented in this paper. Experimental results are presented in terms of turbulent statistics and the frequency spectrum of the velocities. The sources of uncertainties associated with the measured velocity field are quantified. The results are in good agreement with previously published data. The obtained energy spectra confirm Kolmogorov’s theory in the inertial subrange. Coherent structures, obtained with two-point spatial correlations of variances of velocities, show growth in penetration depth with increased downstream distance, which is consistent with the analysis of temporal correlation fields.