ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
N. Chikhi, P. Fouquart, J. Delacroix, P. Piluso
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 200-212
Technical Paper | doi.org/10.1080/00295450.2018.1486160
Articles are hosted by Taylor and Francis Online.
In-vessel retention (IVR) is an attractive strategy to mitigate a severe accident. However, because of low margins, it remains questionable for reactors of power of 1000 MW(electric) and higher. The success of the IVR strategy mainly depends on the mechanical behavior of the vessel after being ablated and on the inner thermal load, i.e., the heat flux transferred by the molten pool to the vessel, which has to remain lower than the critical heat flux. In some configurations, the stratification of the molten pool may lead to heat flux concentration in the thermal conductive metallic layer. An understanding of the metal layer behavior is fundamental in order to estimate the inner thermal load and requires knowing the liquid-metal physical properties, such as density and surface tension. In the present paper, original data of vessel thermophysical properties are proposed for the first time. Measurements of Type 304L stainless steel and 16MND5 ferritic steel density and surface tension have been made using the sessile drop method. Samples have been melted to form a drop on a yttria-stabilized zirconia substrate and heated up to 200°C above the melting point. Low Bond Axisymmetric Drop Shape Analysis has been used to estimate the sample density and surface tension and to propose correlations for the density and surface tension as a function of temperature. The influence of steel properties on metal layer cooling has been discussed. Especially, the sign of the metal temperature surface tension coefficient was found to be most likely positive. In this case, the Bénard-Marangoni flow is opposite to the Rayleigh-Bénard convection flow.