ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. Chikhi, P. Fouquart, J. Delacroix, P. Piluso
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 200-212
Technical Paper | doi.org/10.1080/00295450.2018.1486160
Articles are hosted by Taylor and Francis Online.
In-vessel retention (IVR) is an attractive strategy to mitigate a severe accident. However, because of low margins, it remains questionable for reactors of power of 1000 MW(electric) and higher. The success of the IVR strategy mainly depends on the mechanical behavior of the vessel after being ablated and on the inner thermal load, i.e., the heat flux transferred by the molten pool to the vessel, which has to remain lower than the critical heat flux. In some configurations, the stratification of the molten pool may lead to heat flux concentration in the thermal conductive metallic layer. An understanding of the metal layer behavior is fundamental in order to estimate the inner thermal load and requires knowing the liquid-metal physical properties, such as density and surface tension. In the present paper, original data of vessel thermophysical properties are proposed for the first time. Measurements of Type 304L stainless steel and 16MND5 ferritic steel density and surface tension have been made using the sessile drop method. Samples have been melted to form a drop on a yttria-stabilized zirconia substrate and heated up to 200°C above the melting point. Low Bond Axisymmetric Drop Shape Analysis has been used to estimate the sample density and surface tension and to propose correlations for the density and surface tension as a function of temperature. The influence of steel properties on metal layer cooling has been discussed. Especially, the sign of the metal temperature surface tension coefficient was found to be most likely positive. In this case, the Bénard-Marangoni flow is opposite to the Rayleigh-Bénard convection flow.