ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Hongbin Zhang, Ronaldo Szilard, Ling Zou, Haihua Zhao
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 174-187
Technical Paper | doi.org/10.1080/00295450.2018.1496694
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission (NRC) is proposing a new rulemaking on emergency core system/loss-of-coolant accident (LOCA) performance analysis. In the proposed rulemaking, designated as 10 CFR 50.46c, the NRC puts forward an equivalent cladding oxidation criterion as a function of cladding pretransient hydrogen content. The proposed rulemaking imposes more restrictive and burnup-dependent cladding embrittlement criteria; consequently, more fuel rods need to be analyzed under LOCA conditions to maintain the safety margin, in contrast to the current practice for which only one hot rod needs to be analyzed. New multiphysics analysis methods are required to provide a thorough characterization of the reactor core in order to identify the locations of the limiting rods and quantify safety margins under LOCA conditions. The U.S. Department of Energy’s Light Water Reactor Sustainability Program has initiated a project to develop multiphysics analytical capabilities, called LOTUS, to support the industry in the transition to the proposed rule. An approach to uncertainty quantification and sensitivity analysis with LOTUS was developed. A typical four-loop pressurized water reactor plant model was developed for RELAP5-3D simulations with inputs generated from core design and fuel performance analyses, and uncertainty quantification and sensitivity analysis were performed with 17 uncertain input parameters. The maximum equivalent cladding reacted ratio and peak clad temperature ratio were selected as the figures of merit (FOMs). Pearson, Spearman, partial correlation coefficients, and Sobol indices were considered for all of the FOMs in the sensitivity analysis.