ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Davide Papini, Michele Andreani, Pascal Steiner, Bojan Ničeno, Jens-Uwe Klügel, Horst-Michael Prasser
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 153-173
Technical Paper | doi.org/10.1080/00295450.2018.1505356
Articles are hosted by Taylor and Francis Online.
The installation of passive autocatalytic recombiners (PARs) in the containment of operating nuclear power plants (NPPs) is increasingly based on three-dimensional studies of severe accidents that accurately predict the hydrogen pathways and local accumulation regions in containment and examine the mitigation effects of the PARs on the hydrogen risk. The GOTHIC (Generation Of Thermal-Hydraulic Information for Containments) code is applied in this paper to study the effectiveness of the PARs installed in the Gösgen NPP in Switzerland. A fast release of a mixture of hydrogen and steam from the hot leg during a total station blackout is chosen as the limiting scenario. The PAR modeling approach is qualified simulating two experiments performed in the frame of the OECD/NEA (Organisation for Economic Co-operation and Development/Nuclear Energy Agency) THAI (Thermal-hydraulics, Hydrogen, Aerosols and Iodine) project.
The results of the plant analyses show that the recombiners cannot prevent the formation of a stratified cloud of hydrogen (10% molar concentration), but they can mitigate the hydrogen accumulation once formed. In the case of the analyzed fast release scenario, which is characterized by increasing loads with large initial flow rate and high hydrogen concentration values, it is shown that, when a large number of recombiners are installed, the global outcome in relation to the combustion risk does not depend on the details of the single PAR behavior. The hydrogen ignition risk can be fully mitigated in a timeframe ranging from 15 to 30 min after the fast release, according to the dependence of the PAR efficiency model on the adopted parameters.