ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Davide Papini, Michele Andreani, Pascal Steiner, Bojan Ničeno, Jens-Uwe Klügel, Horst-Michael Prasser
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 153-173
Technical Paper | doi.org/10.1080/00295450.2018.1505356
Articles are hosted by Taylor and Francis Online.
The installation of passive autocatalytic recombiners (PARs) in the containment of operating nuclear power plants (NPPs) is increasingly based on three-dimensional studies of severe accidents that accurately predict the hydrogen pathways and local accumulation regions in containment and examine the mitigation effects of the PARs on the hydrogen risk. The GOTHIC (Generation Of Thermal-Hydraulic Information for Containments) code is applied in this paper to study the effectiveness of the PARs installed in the Gösgen NPP in Switzerland. A fast release of a mixture of hydrogen and steam from the hot leg during a total station blackout is chosen as the limiting scenario. The PAR modeling approach is qualified simulating two experiments performed in the frame of the OECD/NEA (Organisation for Economic Co-operation and Development/Nuclear Energy Agency) THAI (Thermal-hydraulics, Hydrogen, Aerosols and Iodine) project.
The results of the plant analyses show that the recombiners cannot prevent the formation of a stratified cloud of hydrogen (10% molar concentration), but they can mitigate the hydrogen accumulation once formed. In the case of the analyzed fast release scenario, which is characterized by increasing loads with large initial flow rate and high hydrogen concentration values, it is shown that, when a large number of recombiners are installed, the global outcome in relation to the combustion risk does not depend on the details of the single PAR behavior. The hydrogen ignition risk can be fully mitigated in a timeframe ranging from 15 to 30 min after the fast release, according to the dependence of the PAR efficiency model on the adopted parameters.