ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Jinzhao Zhang, Adrien Dethioux, Andriy Kovtonyuk, Christophe Schneidesch
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 140-152
Technical Paper | doi.org/10.1080/00295450.2018.1516055
Articles are hosted by Taylor and Francis Online.
In the framework of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PREMIUM [Post-BEMUSE (Best-Estimate Methods Uncertainty and Sensitivity Evaluation) REflood Model Input Uncertainty Methods] benchmark (2012–2015), Tractebel has contributed to the development and the proof-of-concept application of a sampling-based inverse uncertainty quantification (IUQ) approach with the DAKOTA statistical uncertainty and sensitivity analysis tool. This IUQ approach has been applied to quantify the RELAP5/MOD3.3 reflood-related model input uncertainties, based on selected reflood tests [FEBA (Flooding Experiments with Blocked Arrays) and PERICLES]. This paper presents the Tractebel IUQ approach as well as the results of applications to the PREMIUM benchmark. Lessons learned and perspectives for future development are also discussed.