ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Y. Du, H. X. Li, T. H. Liang, K. S. Liang
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 128-139
Technical Paper | doi.org/10.1080/00295450.2018.1494998
Articles are hosted by Taylor and Francis Online.
The Risk Informed Safety Margin Characterization methodology combines traditional probabilistic safety assessment (PSA) and the best-estimate plus uncertainty approach. Consequently, both stochastic uncertainty and epistemic uncertainty can be taken into overall consideration to evaluate the risk-informed safety margin. Generally, in calculation of the event sequence success criteria in traditional PSA, the result can only be either success (zero) or failure (unity), which is because uncertainties are not properly taken into consideration. In this paper, the conditional exceedance probability (CEP) of a probabilistically significant station blackout sequence of a typical three-loop pressurized water reactor was calculated with the consideration of both stochastic and epistemic uncertainties by using RELAP5. To get the probability density function of the peak cladding temperature (PCT) of a particular sequence and corresponding CEP, random sampling analysis of major plant status parameters and stochastic parameters was performed. It is assumed that the core is damaged when the PCT reaches 1477.6 K. Through the calculation of CEP of this specific sequence, it can be found that core damage will take place in a certain possibility between zero and unity when taking plant status uncertainties and stochastic uncertainties into consideration. Therefore, the core damage frequency (CDF) of any probabilistically significant sequence can be recalculated to get a more precise CEP.
With the application of the computational risk assessment method, not only can the conditional CDF be reasonably reduced, but also the revised model can be made sensitive to a system design change of limited scope. Compared to the traditional PSA evaluation without uncertainty analysis, the CDF of the loss–of–heat sink dominant group can be reduced by a factor of 8.75 (/).