ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Uchibori, A. Watanabe, T. Takata, H. Ohshima
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 119-127
Technical Paper | doi.org/10.1080/00295450.2018.1499323
Articles are hosted by Taylor and Francis Online.
When pressurized water or vapor leaks from a failed heat transfer tube in a steam generator (SG) of sodium-cooled fast reactors, a high-velocity, high-temperature jet with sodium-water chemical reaction may cause wastage on the adjacent tubes. For safety assessment of the SG, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the finite difference method. In this study, an unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for a complex-shaped domain including multiple heat transfer tubes. The multiphase flow under the tube failure accident is calculated by the multifluid model considering compressibility. The governing equations are solved by the Highly Simplified Marker And Cell (HSMAC) method. The original HSMAC method was modified for compressible multiphase flows in the unstructured mesh. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment, which is a key phenomenon in the tube failure accident. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. The calculated behavior of the reacting jet agreed with the previous experimental knowledge. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.