ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Uchibori, A. Watanabe, T. Takata, H. Ohshima
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 119-127
Technical Paper | doi.org/10.1080/00295450.2018.1499323
Articles are hosted by Taylor and Francis Online.
When pressurized water or vapor leaks from a failed heat transfer tube in a steam generator (SG) of sodium-cooled fast reactors, a high-velocity, high-temperature jet with sodium-water chemical reaction may cause wastage on the adjacent tubes. For safety assessment of the SG, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the finite difference method. In this study, an unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for a complex-shaped domain including multiple heat transfer tubes. The multiphase flow under the tube failure accident is calculated by the multifluid model considering compressibility. The governing equations are solved by the Highly Simplified Marker And Cell (HSMAC) method. The original HSMAC method was modified for compressible multiphase flows in the unstructured mesh. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment, which is a key phenomenon in the tube failure accident. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. The calculated behavior of the reacting jet agreed with the previous experimental knowledge. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.